It is hard to overstate the value and cultural importance of the American chestnut tree for those who came before us.

The native hardwood was once so ubiquitous, it has been said, that a squirrel could travel from Maine to Georgia in the chestnut canopy. The largest trees, spreading 100 feet or more, dropped 10 bushels of nuts, and in the fall the ground was covered with a nut blanket four inches deep, sociologist Donald E. Davis writes in a 2005 paper.

The bears and turkeys feasted, the farmer’s hogs feasted, and the people who lived in chestnut territory feasted — on that sweetened Appalachian ham but also on the economic value of the trees and their nuts. The chestnut’s arrow-straight timber was valued for its size and rot resistance and today endures in the posts and beams of old farmhouses and barns.

For us city folk, the chestnut evokes everything that is nostalgic about yuletide season, the notion of a vendor plying hot roasted chestnuts on a street corner. The aroma, the warmth in the hand, the nutty flavor all conjure one of the more cuddly images of a Dickensian world.

Today, this diminished holiday custom is carried on with nuts from Asia and Europe, which are bigger but less sweet.

The American chestnut was killed off by the arrival of a blight in 1904 that within a few decades had virtually wiped out an entire, dominant species. In modern parlance the fungus, Cryphonectria parasitica, went viral.

This environmental catastrophe is widely known. Not so broadly understood is that we are closer than ever to returning the American chestnut to its old haunts — or something akin to it. This resurrection has been several decades in the making and has taken two parallel tracks. The first is in the slow, methodical work of traditional hybridization, attempting with each successive generation a tree that will be naturally resistant to the fungus. This has been led by the American Chestnut Foundation, based in Asheville, N.C. The second is by way of genetic modification, undertaken by scientists at the State University of New York in partnership with the foundation. In a world wary of organism-mixing in the lab, this has proved more controversial.

The conventional breeding began by crossing the blight-tolerant Chinese chestnut with some surviving American chestnut individuals that had proved resistant to the fungus, if only to die back to the roots after reaching nut-bearing age.

The foundation was created in 1983 by plant scientists and others who saw the potential of systematic development of a blight-resistant tree through a series of “backcrosses” in which successive generations of American-Chinese hybrids could be bred with resistant American chestnuts. Once these crosses produced trees that were carrying chiefly the American chestnut genome — as much as 90 percent — they were crossed with each other. The challenge has been to select seedlings with enough Chinese blood in them to ward off the disease and yet still look like the American chestnut. At maturity, the American tree is tall and spreading with a thick, straight trunk. The Chinese species is shorter and more branching.

Most of this work goes on at a research station in southwest Virginia named Meadowview Research Farms. The foundation is supported by 5,000 members and chapters in 16 states.

Jared Westbrook, the foundation’s science director, said that of 60,000 seedlings planted and evaluated, 4,000 have made the cut so far. That number will be reduced to 2,000 in the coming months, and a final cut will leave 600 trees by 2021 as the culmination of the breeding program. These will be used to re-populate the Appalachian forest — though earlier-generation trees produced at Meadowview have already been planted on 40 private, state and national sites in the chestnut’s historical range. Westbrook is using a technique called genomic selection to pick the finalists — by analyzing their DNA he can identify individuals with the desired traits.

This is not to be confused with genetic modification, which is the tack employed by William Powell and his colleagues at SUNY’s College of Environmental Science and Forestry. They have used a wheat gene to counter the effects of the disease and have asked the Agriculture Department to sign off on its release. Also, Powell said, the Environmental Protection Agency will decide whether the antifungal properties constitute a fungicide, which would require pesticide registration. In addition, the Food and Drug Administration will determine whether the nuts are safe to eat.

The foundation is working with the researchers. “If it gets through the review process, the American Chestnut Foundation would breed that gene into a diverse population,” Westbrook said. “We are using all the tools available to us.”

The genetically engineered or transgenic chestnut is facing opposition from an alliance of environmental groups named StopGEtrees, which claims its release into the wild would be “a massive and irreversible experiment” and pave the way for other forest tree species to be genetically engineered and released.

“This would be the first one to be released into nature,” said Rachel Smolker, co-author of a report critical of the plan. The restoration of the American chestnut is such an appealing idea that the proponents of genetic engineering are using it to win acceptance of the broader biotechnology, she says. “It’s about winning public support for genetically engineered trees, which has met with tremendous public resistance,” she said. “It’s a very deliberate strategy. A tree engineered for biofuels doesn’t win over the public in the same way.”

Powell said that the bacterium he used to carry the wheat gene into the chestnut chromosome is already found, naturally, in the DNA of some tree species, including the walnut. “Walnut is a natural GMO,” he said.

The biotechnology “can be applied to other trees,” he said. “But it’s a good thing, it can save more trees.”

mhastings@wsjournal.com

336-727-7394

@mhastingsWSJ

Load comments